Skip to main content

Analysis of a Stony-iron Meteorite Using a HyPix-3000 Detector

AppNote B-XRD1100: Stony-iron meteorite with 2D HyPix-3000 detector

Background

A stony-iron meteorite is like a single crystal. When using 0- or 1-dimensional detectors, only a few diffraction peaks are observed. In this situation, identification of crystalline phases cannot be conducted. Therefore, a stony-iron meteorite was analyzed using the multi-dimensional detector, HyPix-3000, which has an effective detection area for the identification of crystalline phases.

A stony-iron meteorite was analyzed using the HyPix-3000. Inside a stony-iron meteorite, there are transparent parts similar to glass and opaque parts similar to metal. The transparent parts were thought to be non-crystalline (amorphous). However, when measurement of the transparent part was actually performed, only one diffraction line was observed. In general, when measurement is done with a 0D or a 1D detector, the range in which diffraction X-rays can be detected from the sample is limited to a certain region.

XRD products from Rigaku

Advanced state-of-the-art high-resolution XRD system powered by Guidance expert system software

Highly versatile multipurpose X-ray diffractometer with built-in intelligent guidance

New 6th-generation general purpose benchtop XRD system for phase i.d and phase quantification

Compact X-ray diffractometer for quality control of materials that is easy to use and is ideal for routine work

Laboratory micro-spot XRD residual stress analysis with both iso- and side-inclination methods

Windows®-based software suite for Rigaku's X-ray diffractometers

high energy resolution pixel detector capable of 0, 1, and 2D measurements

2D X-ray detector with latest semiconductor technology designed for home lab diffractometers