Skip to main content
XSPA-400 ER
Features
  • High energy resolution enables low-background measurement
  • 0-, 1-, and 2-dimensional measurements with a pixel multidimensional detector
  • High linear counting rate and wide dynamic range while maintaining high energy resolution enable observation from low to high intensity
  • Kβ filterless measurement is available
  • Intensity-priority mode or angular resolution-priority mode can be easily selected by changing the detector orientation

To download the XSPA-400 ER brochure, please fill out the following form

Name
Company:
Email:
Country:
By checking the “I Agree” box and submitting your email address, you are agreeing to our Privacy Notice and our Terms & Conditions   I agree
 


X-ray seamless pixel array detector

0, 1, and 2D pixel detector with high energy resolution

XSPA-400 ER

High energy resolution

In general, X-ray diffraction measurements using a Cu X-ray source are known to have difficulty detecting trace crystalline phases because of increased background when measuring samples containing transition metals. The high energy resolution of the XSPA-400 ER supresses the fluorescent X-rays originating from the sample, thereby reducing background, enabling highly sensitive measurements of samples containing transition metals, such as iron and steel compounds and battery materials.Therefore, it achieves higher sensitivity measurements than conventional detectors.

Seamless multidimensional pixel detector

Since it supports 0, 1, and 2 dimensions, it is possible to obtain general X-ray diffraction patterns and shape measurements of Debye Scherrer rings, making it possible to measure a wide range of samples, from powders and bulk materials to thin films. In addition, the seamless detector eliminates the need for an IC boundary correction because all pixels have the same shape, allowing a uniform image to be obtained.

High linear coefficient and wide dynamic range

Observations from low to high intensities are possible while maintaining high energy resolution.

Filterless Kβ measurements

Taking advantage of the high energy resolution feature, measurement without a Kβ filter is also possible.

High utility utilizing detection area

The detector orientation can be easily switched on its pedestal, making it possible to select between modes with priority given to intensity or angular resolution.

Specifications
Product name XSPA-400 ER
Technique X-ray diffraction
Energy resolution (CuKα) 340 eV (when using fluorescent X-ray reduction mode)
Number of pixels 65,536 pixels
Pixel size 75 μm × 75 μm
Count rate >1 x 10⁵ cps/pixel
Detection area 38.4 x 9.6 = 368.64 mm²

XSPA publications

  1. The Blinking of Small-Angle X-ray Scattering Reveals the Degradation Process of Protein Crystals at Microsecond Timescale, Tatsuya Arai, Kazuhiro Mio, Hiroki Onoda, Leonard M. G. Chavas, Yasufumi Umena, and Yuji C. Sasaki, Int. J. Mol. Sci. 24(23), 16640, 2023. 
  2. Functional composites by programming entropy-driven nanosheet growth, Emma Vargo, Le Ma, He Li, Qingteng Zhang, Junpyo Kwon, Katherine M. Evans, Xiaochen Tang, Victoria L. Tovmasyan, Jasmine Jan, Ana C. Arias, Hugo Destaillats, Ivan Kuzmenko, Jan Ilavsky, Wei-Ren Chen, William Heller, Robert O. Ritchie, Yi Liu & Ting Xu, Nature 623, 724-731, 2023.
  3. Robotic pendant drop: containerless liquid for μs-resolved, AI-executable XPCS, Doga Yamac Ozgulbas, Don Jensen Jr., Rory Butler, Rafael Vescovi, Ian T. Foster, Michael Irvin, Yasukazu Nakaye, Miaoqi Chu, Eric M. Dufresne, Soenke Seifert, Gyorgy Babnigg, Arvind Ramanathan & Qingteng Zhang, Light: Science and Applications 12, 196, 2023.
  4. Opportunities of Soft Materials Research at Advanced Photon Source, Mrinal Bera, Qingteng Zhang, Xiaobing Zuo, Wei Bu ,Joe Strzalka, Steven Weigand, Jan Ilavsky, Eric Dufresne, Suresh Narayanan & Byeongdu Lee, Synchrotron Radiation News 36(2), 12-23, 2023. 
  5. Nanoparticle Diffusion in Miscible Polymer Nanocomposite Melts, Nicholas F. Mendez, Deboleena Dhara, Qingteng Zhang, Suresh Narayanan, Linda S. Schadler, Alejandro J. Müller, and Sanat K. Kumar, Macromolecules 56(12), 4658-4669, 2023.
  6. pyXPCSviewer: an open-source interactive tool for X-ray photon correlation spectroscopy visualization and analysis, M. Chu, J. Li, Q. Zhang, Z. Jiang, E. M. Dufresne, A. Sandy, S. Narayanan and N. Schwarz, J. Synchrotron Rad. 29, 1122-1129, 2022.
  7. From Femtoseconds to Hours—Measuring Dynamics over 18 Orders of Magnitude with Coherent X-rays, Felix Lehmkühler,Wojciech Roseker and Gerhard Grübel, Appl. Sci. 11(13), 6179, 2021.
  8. Characterization and performance evaluation of the XSPA-500k detector using synchrotron radiation Y. Nakaye, T. Sakumura, Y. Sakuma, S. Mikusu, A. Dawiec, F. Orsini, P. Grybos, R. Szczygiel, P. Maj, J. D. Ferrara and T. Taguchi, J. Synchrotron Rad. 28, 439-447, 2021. 
  9. Use of continuous sample translation to reduce radiation damage for XPCS studies of protein diffusion, L. B. Lurio, G. M. Thurston, Q. Zhang, S. Narayanan and E. M. Dufresne, J. Synchrotron Rad. 28 490-498 2021.
  10. 20 µs-resolved high-throughput X-ray photon correlation spectroscopy on a 500k pixel detector enabled by data-management workflow, Q. Zhang, E. M. Dufresne, Y. Nakaye, P. R. Jemian, T. Sakumura, Y. Sakuma, J. D. Ferrara, P. Maj, A. Hassan, D. Bahadur, S. Ramakrishnan, F. Khan, S. Veseli, A. R. Sandy, N. Schwarz and S. Narayanan, J. Synchrotron Rad. 28, 259-265, 2021.
  11. First pump–probe–probe hard X-ray diffraction experiments with a 2D hybrid pixel detector developed at the SOLEIL synchrotron, D. Bachiller-Perea, Y.-M. Abiven, J. Bisou, P. Fertey, P. Grybos, A. Jarnac, B. Kanouté, A. Koziol, F. Langlois, C. Laulhé, F. Legrand, P. Maj, C. Menneglier, A. Noureddine, F. Orsini, G. Thibaux and A. Dawiec, J. Synchrotron Rad. 27, 340-350, 2020.
  12. Sub-microsecond-resolved multi-speckle X-ray photon correlation spectroscopy with a pixel array detector, Q. Zhang, E. M. Dufresne, S. Narayanan, P. Maj, A. Koziol, R. Szczygiel, P. Grybos, M. Sutton and A. R. Sandy, J. Synchrotron Rad. 25, 1408-1416, 2018.
  13. Evaluation of the UFXC32k photon-counting detector for pump–probe experiments using synchrotron radiation, A. Koziol, M. Bordessoule, A. Ciavardini, A. Dawiec, P. Da Silva, K. Desjardins, P. Grybos, B. Kanoute, C. Laulhe, P. Maj, C. Menneglier, P. Mercere, F. Orsini and R. Szczygiel, J. Synchrotron Rad. 25, 413-418, 2018. 
  14. Hard-sphere-like dynamics in highly concentrated alpha-crystallin suspensions, Preeti Vodnala, Nuwan Karunaratne, Laurence Lurio, George M. Thurston, Michael Vega, Elizabeth Gaillard, Suresh Narayanan, Alec Sandy, Qingteng Zhang, Eric M. Dufresne, Giuseppe Foffi, Pawel Grybos, Piotr Kmon, Piotr Maj, and Robert Szczygiel, Phys. Rev. E 97, 020601(R), 2018.
  15. High speed systems for time-resolved experiments with synchrotron radiation, Anna Koziol and Piotr Maj, Journal of Instrumentation 13, C02049, 2018.
  16. Dynamic Scaling of Colloidal Gel Formation at Intermediate Concentrations, Qingteng Zhang (张庆腾), Divya Bahadur, Eric M. Dufresne, Pawel Grybos, Piotr Kmon, Robert L. Leheny, Piotr Maj, Suresh Narayanan, Robert Szczygiel, Subramanian Ramakrishnan, and Alec Sandy, Phys. Rev. Lett. 119, 178006, 2017.
  17. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time, Q. Zhang, E. M. Dufresne, P. Grybos, P. Kmon, P. Maj, S. Narayanan, G. W. Deptuch, R. Szczygiel and A. Sandy, J. Synchrotron Rad. 23, 679-684, 2016.
  18. 32k Channel Readout IC for Single Photon Counting Pixel Detectors with 75 μm Pitch, Dead Time of 85 ns, 9 e⁻ rms Offset Spread and 2% rms Gain Spread, P. Grybos, P. Kmon, P. Maj and R. Szczygiel, IEEE Transactions on Nuclear Science, 63(2), 1155-1161, 2016.
  19. 23552-channel IC for single photon counting pixel detectors with 75 µm pitch, ENC of 89 e⁻ rms, 19 e⁻ rms offset spread and 3% rms gain spread, P. Maj, P. Grybos, P. Kmon and R. Szczygiel, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC), Venice Lido, Italy, 147-150, 2014.