Understanding the Impact of Biochar Amendment on Macropores in Soil from 3D X-Ray CT Tomography

Marcus Bowser¹, Shivam², Erik Ervin³, and Paul Imhoff ¹

¹Department of Civil and Environmental Engineering, University of Delaware ²Department of Chemical and Biomolecular Engineering, University of Delaware ³Department of Plant and Soil Sciences, University of Delaware

Overview

- Research background
- Experiment background and set-up
- X-ray CT
- Dragonfly analysis

Introduction

- Departments of Transportation (DOTs) must meet increasingly stringent stormwater runoff regulations
 - Maryland DOT
 - 75% reduction in nitrogen, phosphorous, and sediment loads

Capital Gazette Newspaper

Stormwater Runoff- Quality

- Pesticides, leaking fuel or motor oil and other chemical contaminants
- Nutrients from atmospheric deposition, roadway debris
- Stream restoration = \$73k per impervious acre treated
- Tree plantings = \$100k " " "
- Retrofits = \$92k " " "

Overall Problem and Proposed Solution

- Use existing highway greenway usually not counted for treatment
 - Highly compacted with steep slopes
 - Little no stormwater infiltration
- Modify existing space with biochar
 - Increase water infiltration and water holding capacity
 - Biological pollutant removal

Transportation Research Board 2018

Biochar

- Enhance retention of N and water in the soil zone
- Increase rates of infiltration and chemical transformations

Biochar

Pine wood biochar

Envelope density (g/cm³)= 0.44

IBI biochar report

Particle Size Distribution

	Results	Units
< 0.5mm	1.4	percent
0.5-1mm	3.2	percent
1-2mm	49.8	percent
2-4mm	43.9	percent
4-8mm	1.8	percent
8-16mm	0.0	percent
16-25mm	0.0	percent
25-50mm	0.0	percent
>50mm	0.0	percent

Big Picture Questions

- How does biochar impact soil hydrology and soil properties?
- Does biochar have a significant impact on the growth and root structure of typical roadside turfgrass (Tall Fescue)?

Experiment Measurements

- Soil hydrology and soil properties
 - Wet aggregate size distribution, water retention, and water infiltration
- Grass chlorophyll content, shoot dry biomass and shoot height
- Grass root biomass and morphology
- Experiment consists of 72 columns with 6 replicates of the following combinations:
 - "Normally" compacted vs. highly compacted
 - Grass vs. bare soil
 - 0%, 2% and 4% Biochar (w/w) amended soil

Experimental Setup

X-Ray Analysis

- Use x-ray imaging to scan undisturbed soil columns
- How does macropore structure change between treatments?
 - Total volume of air-filled pores
 - Pore connectivity via pore-network modeling
 - Pore size distribution

X-Ray CT

- Used the Rigaku GX 130 CT Scanner to scan columns
 - High resolution with 57-minute scan time

X-Ray CT

• Scanned one representative replicate for each of the 0% and 4% biochar columns

- 8 columns in total
- Scanned the top 12cm of each column

Dragonfly Analysis

- Use Dragonfly to model & analyze column scans
- 144-micron resolution

0% biochar, uncompacted, no grass

4% biochar, compacted, no grass

4% biochar, compacted, no grass

0% biochar, uncompacted, no grass

Segmentation Wizard – General Procedure

- 1. Begin by separating high and low threshold ranges
 - Upper and lower Otsu
- 2. Paint everything
 - Upper Otsu= Solids
 - Lower Otsu= Biochar/air
- 3. Manually adjust paintings
- 4. Train model
 - "Quick Start" option
- 5. Make a new frame and apply best model
- 6. Manually adjust segmentation with painting
- Train model
- 8. Repeat steps 5-7 until 5 frames have been trained
- 9. Apply model

Segmentation Wizard-Procedure Information

- Gradually increase each frame size for training
 - Frame 1 labeled ~4,500 voxels
 - Frame 5 labeled ~12,500 voxels
- Adjust manually painted frames as needed
- Not all new frames needed manual adjustment with painting after applying model to them
- Applied the "Quick Start" models to train
 - SegWiz_U-Net_dl-3_ifc-64
 - SegWiz_R-Forest_A-M-2
 - SegWiz_R-Forest_Morphological_GaussianMS_Neighbors
- Deep Learning models seemed best

Segmentation Wizard

Air

Biochar

Segmentation Wizard

Segmentation with a Mask- 4% Biochar Column

- Segmentation with a mask over original data set
- Going to lose some data along the PVC wall

4% biochar, compacted, no grass

4% biochar, compacted, no grass

- Some solids getting mixed in with pores
- Air space being counted as a solid is typically ~200-300 microns in width by ruler
 - 1 to 2 voxels

4% biochar, compacted, no grass

- Biochar volume from model= 27.5%
 - Actual volume= 9.7%
- Air space volume from model= 16.0%
 - Calculated total pore volume= 51.7%
 - Scans did not pick up air space below 144-μm
- Solids volume from model= 56.3%
 - Actual volume= 38.6%
- Significant water in pore space being counted as a solid or biochar?

Possible conclusions thus far:

- Solids getting mixed in with smaller air space
- Air space getting labeled as biochar?

Air Space Volume Thickness Distance Map- 4% Biochar Column

- Smaller air spaces directly adjacent to biochar appear to be getting labeled as air space
 - Similar densities of biochar and air makes it difficult to decipher

4% Biochar Modeling Issues Summary

- 1. Air space smaller than 144-microns not getting picked up
- 2. Significant water still being held?
- 3. Adjacent air space to biochar getting included with biochar
- 4. Smaller air spaces being counted as solids

Soil = green Air = Purple

0% biochar, uncompacted, no grass

- A lot of overlap between air space and solids
- Similar issue of smaller air spaces being counted as solid
- Not much information could be gathered from this model

Soil = green Air = Purple

4% biochar, compacted, no grass

Air Space Volume Thickness Distance Map-0% Biochar Column

- Appears striation is occurring in this column
 - Column wasn't packed well

Next Steps

- See if better models can be trained
 - Include smaller air spaces in-between solids
 - Distinguish biochar from adjacent pore spaces
- Rescan columns at a smaller resolution?
- Make a pore-network model
- Get air space size distribution
- Compare results between treatments

Pore-Network Model Example

Project CPGs Nubian- ETH Zurich

The Big Questions

 Can the deep learning tool accurately segment air space, biochar, and solids?

Will I have to train a new model for each column set scanned?

Is there significant user error during the model training process?

Acknowledgments

- The Imhoff lab group
- Undergraduate Research Assistant- Shivam Chauhan
- Jerry Poirier
- The UD Dragonfly user help club
- Funding agencies- The Department of Civil and Environmental Engineering, DelDOT, and MDTA

