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Basic principle and operation methods of  
the direct-derivation method

Hideo Toraya*

1.　Introduction
Quantitative phase analysis (QPA) using the X-ray 

diffraction technique is routinely employed to find 
weight ratios of individual component phases in a 
mixture. Techniques for QPA have been widely used 
not only in research and development but also routinely 
deployed for quality control of industrial products. 
Various techniques have been proposed for QPA in 
past decades (1). Some techniques are designed for 
exclusive use in QPA of specific materials such as 
zirconia (2), silicon nitrides (3) etc., while the calibration-
curve method (4), the reference intensity ratio (RIR) 
method (5), (6), and the Rietveld method (2), (7)–(9) have 
been applied to QPA of general materials. The direct 
derivation method (DDM) is also a QPA technique 
suitable for use with general materials (10)–(15). The 
observed diffraction pattern of a mixture is the 
superposition of component patterns for individual 
phases. In conducting QPA, the observed diffraction 
intensities of the mixture must be separated into 
intensity datasets of the individual components. In 
deriving the weight ratios from intensity datasets, 
the Rietveld method uses crystal structure parameters 
while the RIR method uses experimentally derived 
or calculated RIR. Unlike other methods, the DDM 
requires only chemical composition data of the 
individual components. Chemical composition data are 
available in almost all cases, since QPA is usually 
conducted after phase identification or applied to 
chemically known materials. Therefore, the DDM has 
no limitation in applying QPA to any materials as long 
as the intensity datasets for the individual components 
are available.

Basic principle of the DDM is very simple. 
Parameters, used for deriving the weight ratios, can 
definitely be calculated using chemical composition 
data. Therefore, its accuracy in QPA is mostly dependent 
on the accuracy in the intensity datasets for individual 
components. Thus the correct choice of a decomposition 
tool, for a given situation, will deliver the highest quality 
result. Therefore, it is important to understand handing 
of various techniques used for separating the observed 
pattern into the component patterns. Readers of this 
article may be engaged in various analytical works, with 
many of them having experiences with QPA. Some of 
them will also be interested in reading original articles. 
So core mathematical formulas are presented at each 

step of this article. Theoretical and experimental details 
are located in references 10 to 15.

2.　Basic principle of the DDM
Let us consider a solid cube as shown in Fig. 1. We 

would like to weigh the cube. The cube is, however, 
too big to be weighed with an analytical balance, while 
its volume (Vcube) can easily be measured with a ruler. 
If we know the volume per unit weight (V1g, or specific 
volume) for the material that constitutes the cube, then 
we can easily derive the weight of the cube (Wcube) by

 cube
cube

1g

V
W

V＝   (1)

The DDM is based on the same idea as that represented 
by equation (1): the volume of the cube can be 
replaced with the total sum of scattered intensities (S) 
from the material irradiated by X-rays. We can derive 
the weight of the material by dividing the S by the 
scattered intensity per unit weight (S1g). In the case of a 
K-component mixture, the weight of the kth component 
(Wk) can be calculated by
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where Sk is the total sum of scattered intensities (S) for 
the kth component, ak

－1, the reciprocal form of ak, is 
the scattered intensity per unit weight (S1g), and C is 
the proportional constant. It is experimentally difficult 
to measure the scattered intensity on an absolute scale; 
for example, the observed diffracted intensity will be 
twice as large if the incident beam intensity is doubled 
where the weight of the material does not change. 

* Senior Adviser, Rigaku Corporation.
Fig. 1. Basic idea of the DDM is the same as weighing of a 

solid cube.
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The quantities which we would like to find in QPA 
are, however, relative weight ratios of the individual 
components. Then, under the normalization condition, 
the weight fraction for the kth component (wk) can be 
calculated by
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By substituting equation (2) into equation (3), the wk can 
be given by
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In equation (4), the proportional constant C in equation 
(2) is cancelled out. The scattered intensities from the 
individual components (Sk) are required only in relative 
magnitudes. Equation (4) is used as the basic formula 
in the DDM, and it is called “the intensity-composition 
(IC) formula”. Conceptually “intensity” comes from 
the sum total of scattered intensities Sk and the meaning 
of “composition” will soon become clear. Sk in the 
IC formula is the observed quantity derived from the 
measured powder diffraction pattern. Parameter ak

－1 is 
a theoretical value whose derivation will be described in 
the next section.

3.　Scattered intensity per unit weight
The parameter ak

－1 can be calculated by
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where Mk is the chemical formula weight of the kth 
component material and nik is the number of electrons 
belonging to the ith atoms (i＝1－Nk

A) in the chemical 
formula unit (10), (14). The squared number of electron 
(nik

2) represents the total scattering power of the ith atom, 
and the quantity ∑nik

2 represent the total sum of scattered 
intensities from atoms in the chemical formula unit. 
The chemical formula weight Mk corresponds to the 
unit weight, and equation (5) represents the total sum 
of scattered intensities per unit weight. In the case, for 
example, of α-quartz with the chemical formula of SiO2, 
the chemical formula weight is given by Mk＝28.086＋ 
2×15.999＝60.084 g/mol, and the sum of the squared 
numbers of electrons is given by 142＋2×82＝324. 
Then ak has the value of ak＝60.084/324＝0.18544. 
The parameter ak used in the IC formula can easily be 
calculated for a given chemical composition with a 
periodic table and a pocket calculator. Now the meaning 
of the “composition” in the IC formula may be clear.

Many readers of this article will wonder, “can we 
really calculate the total sum of scattered intensities per 
unit weight only from the chemical composition data?” 
Equation (5) was first derived by using the approximate 
relationship between the height and the integrated value 
of the peak at the origin of the Patterson function (10), (16). 
Thereafter, it was theoretically verified that equation 
(5) holds in the case of scattered intensities from an 
assemblage of atoms at arbitrary positions (14). This 

means that the IC formula can be applied not only to 
crystalline materials but also amorphous materials.

4.　Characteristics of the parameter ak
－1

Atomic scattering factors and positional coordinates 
of individual atoms are required for calculating 
intensities of individual diffraction lines and theoretical 
powder diffraction patterns. With respect to the total 
sum of scattered intensities, however, it is possible to 
calculate it using only chemical composition data of 
materials with equation (5). The ak

－1 depends only on 
the chemical composition. It is an intrinsic parameter 
of the material, and it has the physical meaning of “the 
scattered intensity per unit weight”. Furthermore, it has 
the relationship represented by ak

－1≈Ak
av/D, where Ak

av 
is the average atomic weight of atoms in the chemical 
formula unit (Ak

av＝Mk/Nk
A), D is a ratio of atomic weight 

to atomic number, where D≈2 (D＝2.006 in the case 
of Si). Therefore, the ak

－1 is proportional to the average 
atomic weight of the material (12), (13).

As clearly be seen from equation (4), the parameters 
ak are not needed in QPA of polymorphs with the same 
chemical composition. Furthermore, as will be described 
in Table 1, materials with similar chemical compositions 
have ak values which are close to each other. As is 
understood from equation (5), the increase of atomic 
weight accompanies the increase of the number of 
electrons, and increases or decreases in the numerator 
and denominator are cancelled out. Rock forming 
minerals as natural products have generally complicated 
chemical compositions: they contain various kinds of 
atoms as trace elements and metal ions are replaced 
between the coordination polyhedra. The influence on 
the magnitudes of derived weight fractions is, however, 
negligibly small even when the ideal chemical formula 
is used instead of the actual chemical formula obtained 
by chemical analysis of natural samples. Magnitudes 
of errors in the derived weight fractions induced by 
variations in chemical compositions are discussed in 
reference 12.

5.　 How to derive the total sum of scattered 
intensities Sk

As was stated in §1, the observed diffraction 

Table 1. A comparison of ak values for series of magnesium 
silicate hydrates and hydrocarbons with similar 
chemical compositions (12). Values at the bottom 
line are the averages of individual ak values. Values 
in parentheses are the standard deviations for the 
averages.

Chemical formula ak Chemical formula ak

Mg3(SiO4) (OH)2 0.19028 C10H8 0.3483

Mg5(SiO4)2(OH)2 0.19023 C14H10 0.3468

Mg7(SiO4)3(OH)2 0.19020 C18H12 0.3459

Mg9(SiO4)4(OH)2 0.19019 C22H14 0.3454

Average 0.19022(4) Average 0.3466(11)
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pattern of a mixture is the superposition of individual 
component patterns. The corresponding calculated 
pattern, y(2θ), can be synthesized by superposing the 
individual component patterns, represented by y(2θ)k. 
For a K-component mixture, it is given by

 ( ) ( ) ( )BG
1

y 2 2 2θ θ θ
K

k
k

y y
＝

＝ ＋   (6)

where y(2θ)BG is the background intensity. The 
observed quantities required for the DDM are total 
sums of scattered intensities (Sk) from the individual 
components. Therefore, it is first necessary to separate 
the observed pattern into the individual components 
y(2θ)k. Various techniques can be used for separating the 
pattern. They can be categorized into two groups. One 
decomposes the pattern into individual diffraction lines, 
and then the diffraction lines are grouped into respective 
components. The other one separates the pattern by 
directly fitting individual components y(2θ)k to be in 
proportion to relative intensity ratios.

5.1.　Individual profile fitting technique
Individual profile fitting (IPF) technique can 

decompose overlapping diffraction lines present in 
a relatively narrow 2θ-range. It can be applied if 
angular positions of individual diffraction lines can be 
recognized. Figure 2 shows an example of applying 
the IPF to three overlapping diffraction lines from an 
α-SiO2＋Si mixture. The individual diffraction lines 
are modeled by IjkP(2θ)jk, where Ijk is the integrated 
intensity parameter for the jth diffraction line of the 
kth component, and P(2θ)jk is the normalized profile 
function used for representing the profile shape (17). The 

y(2θ) can be synthesized by superposing the individual 
diffraction lines as shown in Fig. 2, and it can be 
expressed by

 ( ) ( ) ( )BG2 2 2θ θ θ jk jk
k j

y y I P＝ ＋   (7)

where ∑jIjkP(2θ)jk is identical to the y(2θ)k in equation 
(6). The y(2θ) is least-squares fitted to the observed 
diffraction pattern by adjusting the integrated intensity 
parameters (Ijk) together with peak positions, profile 
width and profile shape parameters. A series of least-
squares fittings can automatically be conducted from 
the low-angle side to the high-angle side by using 
commercially available or freely distributed software 
suites. The resulting output will be a list of d values, 
integrated intensities (I) and indices (hkl) for respective 
phases. The Sk for each component can be obtained 
by summing up the Ijk with equation (8) (§5.2.a). 
Accurate datasets of Sk will be obtained with IPF 
technique when the observed diffraction pattern is not 
complicated (10), (16).

5.2.　Whole-powder-pattern fitting techniques
Whole-powder-pattern fitting (WPPF) techniques 

are powerful tools for analyzing complicated powder 
diffraction patterns. Currently used techniques in this 
category are the whole-powder-pattern decomposition 
(WPPD) method based on the Pawley algorithm (18) or 
the Le Bail algorithm (19), the Rietveld method (7), and 
the full-pattern-fitting (FPF) method (20). This last method 
utilizes the single-phase observed diffraction pattern after 
subtracting background intensities. All of these methods 
have originally different analytical purposes, and they 
use different fitting functions for calculating the y(2θ)k 
in equation (6). In the DDM, four different types of 
fitting functions, with one new type in addition to the 
above three types, are currently available for separating 
diffraction patterns by WPPF. They are called type-A, 
B, C and C2

 (13)–(15), respectively. These four types of 
fitting functions can arbitrarily be chosen and combined 
in accordance with analysis conditions and then fitted 
simultaneously. Understanding the differences between 
these four functions and their applied conditions is 
recommended for mastering the DDM.
a)  Type-A function: use of the WPPD method

Type-A function is the same as that used in the 
Pawley method for WPPD. It uses the same profile 
model as that used in the IPF technique [equation (7)]. 
All Ijk parameters in a wide 2θ-range are simultaneously 
fitted using the least-squares method. Peak positions are 
constrained by the unit-cell parameters, and unit-cell 
parameters are refined instead of the individual peak 
positions. After the least-squares fitting, a list of refined 
Ijk values are delivered for respective phases. The Sk can 
then be calculated by
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Fig. 2. Result of individual profile fitting applied to three 
overlapping diffraction lines from an α-SiO2 ＋ 
Si mixture (17). Observed and calculated intensities 
are represented by plus symbols and solid lines, 
respectively. The plot at the bottom of the diagram 
represents differences between the two intensities on 
the same scale. Short vertical bars are peak position 
markers.
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where Gjk is the correction term for the Lorentz-
polarization factor and the geometrical factor of the 
diffractometer optics (10). Unit-cell parameters are 
required as input data for the phase to which the type-A 
function is assigned. Input of the space group, as 
additional information, avoids unnecessary computation 
and increases the accuracy in refined Ijk values.
b)  Type-B function: use of pre-determined 

parameters of Ijk
Materials with large unit cells and low 

crystallographic symmetry like triclinic or monoclinic 
system give generally complicated diffraction patterns 
with many crowded peaks in the middle and high 
angle regions. Obtaining accurate intensity parameters 
becomes difficult even with a WPPD technique when 
the complicated diffraction patterns of two or three 
phases overlap. It is particularly difficult for the minor 
phases. In such a case, the accuracy of intensity 
parameters will be improved if individual Ijk parameters 
are pre-determined for respective phases. Then 
adjustments of scale parameters instead of the individual 
Ijk will suffice for WPPF.

{I′jk} is a dataset of integrated intensity parameters, 
which are pre-determined by applying the type-A 
function to a single-phase component material in 
WPPD. Type-B function uses SckI′jk instead of Ijk, where 
Sck is the scale parameter. In WPPF, Sck is least-squares 
fitted, while {I′jk} are fixed at pre-determined values. 
Symbol I′jk is used in order to distinguish it from the 
refinable parameters Ijk in the type-A function. When the 
type-B function is used, equation (8) is replaced with
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Decomposing the single-phase component pattern is 
one of the ways to obtain {I′jk}. The {I′jk} can also be 
prepared by employing computer software for the 
calculation of structure factors. If a rough approximation 
is allowed, the {I′jk} can be derived from the d-I dataset 
used for the phase identification.
c)  Type-C function: use of single-phase 

observed diffraction pattern after background 
subtraction

When the type-B function is used in WPPF, individual 
diffraction patterns, synthesized with the {I′jk}, are 
least-squared fitted by adjusting the Sck. If ready-made 
diffraction patterns are available for the individual 
phases, they can be used for WPPF in place of the 
type-B function. A measured diffraction pattern of 
a single-phase component material, obtained under 
the same experimental conditions as those for the 
target mixtures, gives the ready-made diffraction pattern 
after subtracting the background from the pattern. The 
type-C function uses this background-subtracted pattern, 
represented by y(2θ)′k, in a form Sck y(2θ)′k, and it is fitted 
by adjusting the Sck in WPPF. Instead of summing up 
the individual Ijk or I′jk values, the Sk can be expressed by 
integrating the Sck y(2θ)′k G(2θ) over the 2θ-range [2θL, 
2θH] used for WPPF, and it is given by
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Symbol Yk is used instead of the Sk in the sense that the 
total sum of scattered intensities is the integrated value 
rather than the sum of discrete intensities. However, it 
can easily be verified that Sk＝Yk

 (13). A QPA technique 
utilizing the observed diffraction patterns is known 
as the FPF method (20). The FPF method is, however, 
based on the RIR method, and the RIR value must 
experimentally be determined with the binary mixture of 
the target component material and a standard reference 
material (13).

When the type-A and B functions are used in 
WPPF, the profile models can be fitted by adjusting the 
parameters representing the profile width and shape 
together with intensity parameters Ijk or Sck. On the 
other hand, the type-C function, using a fixed pattern for 
WPPF, will induce discrepancies when the component 
materials are structurally unstable and change their 
profile widths and shapes with time. The type-C 
function, however, will demonstrate its power when the 
component pattern could neither be decomposed nor 
calculated based on the crystal structural model, as is 
often the case for low crystallinity materials.
d)  Type-C2 function: use of the single-phase 

observed diffraction pattern without 
subtracting the background

Before applying the type-C function, subtracting the 
background is a required step. Background subtraction 
is not a difficult task for patterns with well-defined 
background regions for the whole 2θ-range. It is, 
however, a difficult task when target materials are 
amorphous materials, low crystallinity materials like 
hydrates, materials with diffuse scattering due to 
structural defects, and many organic materials with low 
crystallographic symmetry that exhibit crowded weak 
peaks in the middle and high angle regions. The single-
phase observed diffraction pattern can be represented by 
y(2θ)k

S＝y(2θ)′BG_k＋y(2θ)′k, where y(2θ)′BG_k represents 
the background intensity. Instead of Sck y(2θ)′k in the 
type-C function, the type-C2 function uses Sck y(2θ)k

S 
without subtracting the background intensities (15). The 
type-C2 function can be fitted, in the same manner as the 
type-C function, by adjusting the Sck.

The Yk, defined by equation (10), is the integrated 
value of peak profile intensities, Sck y(2θ)′kG(2θ). 
Quantity Bk is defined as the integrated value of 
background intensities, Sck y(2θ)′BG_kG(2θ) in the same 
2θ-range as that for the integration in equation (10). 
Then the quantity Yk

BP, defined by Yk
BP＝Bk＋ Yk, simply 

represents the integrated value of the Sck y(2θ)k
S G(2θ) 

in the same 2θ-rang for Bk and Yk. WPPF will output the 
Yk

BP for the component, to which the type-C2 function is 
assigned. By defining the ratio Rk＝Bk/Yk, the Yk

BP can be 
converted into the Yk by (15)
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The Yk by equation (11) can be used in the IC formula.
The type-C2 function can be used in combination with 

the other types of fitting functions. Then it is, in general, 
necessary to determine the ratio Rk for the component, 
to which the type-C2 is assigned. The type-C2 function 
can, however, be used without determining the Rk when 
target mixtures satisfy the following conditions,
1)  The type-C2 function is assigned to all components in 

a mixture.
2)  The component materials satisfy the following 

condition.

 R1≈R2≈R3≈…≈RK (12)

Let us consider substituting equation (11) into equation 
(4). The ratios Rk for all components in equation (4) are 
cancelled out when the condition in equation (12) holds 
true. In this case, the IC formula becomes
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Therefore, we can conduct QPA with the Yk
BP without 

subtracting the background. It is often the case that the 
condition in equation (12) is satisfied as in the cases 
of polymorphs, many organic compounds consisting 
of similar elements as H, C, O, N, and chemically 
analogous materials. For these materials, the condition 
a1≈a2≈a3≈…≈aK would also hold. Real examples will 
be given in §7.

It should be noted that compounds containing certain 
elements (for example, the element Fe) exhibit high 
background intensities due to X-ray fluorescence 
emitted when CuKα radiation is used for data collection. 
For mixtures containing compounds of this kind, 
equation (12) does not hold true so equation (11) 
must be used for that component to which the type-C2 
function is assigned. Two experimental techniques for 
determining the magnitude of Rk are described in 
reference 15.

6.　Rietveld QPA and the DDM
If we reconsider the theory of QPA using the Rietveld 

method (Rietveld QPA), we find that the quantity 
corresponding to equation (5) is also calculated in 
Rietveld QPA (13): the sum of scattered intensities per 

unit weight is calculated by summing up the squared 
structure factors |F(hkl)|2 in a finite 2θ-range. This 
quantity will become identical to the ak

－1 [equation (5)] 
if the summation of |F(hkl)|2 is extended to infinity in 
reciprocal space. Rietveld QPA can be conducted with 
measured data in a finite 2θ-range, but crystal structure 
parameters are always required to calculate the F(hkl) 
for all components in a mixture. In QPA using the 
DDM, the ak

－1 can be calculated only from the chemical 
composition data, while the corresponding observed 
intensities should, in principle, be summed up to infinity. 
In practice, however, relative magnitudes of S1:S2:S3: . . . 
SK are always effective in equation (4), and the 2θ-range 
used for WPPF are substantially the same for both 
Rietveld QPA and the DDM.

Four types of the fitting functions currently available 
in the DDM are summarized in Table 2. Rietveld QPA 
can be regarded as QPA using the type-B function with 
the intensity datasets {I′jk} prepared by calculating 
F(hkl). Individual weight fractions are derived from 
refined scale parameters by using the formula reported 
by Hill and Howard (9). In the DDM, the observed 
quantities required in the IC formula are the total 
sums of scattered intensities (Sk). They can be derived 
by using various ways as presented on the third line 
of Table 2. Incorporation of various types of fitting 
functions, as shown in Table 2, widens the applicability 
of the DDM to any mixtures containing highly 
crystalline materials to low crystallinity and amorphous 
materials. Even when unknown material is present in the 
mixture, it can be quantified by estimating its chemical 
composition from the batch chemical composition of the 
mixture (12).

7.　Examples of applications
Presenting real examples of applications provides a 

short cut for understanding how to handle the type-A 
to C2 functions summarized in Table 2. All examples 
presented below are results obtained from testing the 
various types of the functions used in the DDM. 
Mixture samples used were prepared by mixing reagent-
grade chemicals weighed in specified weight ratios. 
Each sample was then packed, using the standard 
procedure, into a rotational flat specimen holder. Their 
profile intensities were measured by Rigaku SmartLab 
equipped with an X-ray source for CuKα radiation and 

Table 2. Summary of functional forms for the individual types of the subfunctions used in WPPF.

Type A B C C2
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Adjustable intensity parameter Ijk Sck Sck Sck

Input data Unit-cell parameters {I′jk}, unit-cell parameters y(2θ)′k y(2θ)k
S
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a one-dimensional silicon strip detector (D/teX Ultra 
250, strip width＝75 μm, 256 channels) on the diffracted 
beam side. Diffractometer optics were based on the 
Bragg-Brentano geometry, and regular dimensions 
were chosen for slit systems (13)–(15). In the following, 
wk

weigh and ∆wk represent the weighed value and ∆wk＝ 
wk－wk

weigh (in %), respectively.

7.1.　Combined use of type-A, B and C functions
A ternary mixture consists of α-quartz (SiO2), albite 

(NaAlSi3O8) and kaolinite (Al2Si2O5(OH)4) in weight 
ratios of 5 : 4 : 1, which simulate weathered granites used 
as raw materials in ceramics industry. Steps of QPA 
using the type-A, B and C functions are as follows (13).
1)  The Pawley-based WPPD method using the type-A 

function was applied to an observed diffraction 
pattern of single-phase albite. Least-squares 
refinement of intensity parameters outputs the {Ijk}. 
Albite belongs to the triclinic system, and the WPPF 
result exhibits many crowded diffraction lines as 
shown in Fig. 3.

2)  Kaolinite is a kind of clay mineral that usually 
exhibits broadened profiles and diffuse scattering 
arising from stacking disorder. Its diffraction pattern 
can neither be modeled without taking the structural 
disorder into account, nor properly decomposed 
with the pattern decomposition method. In Fig. 4, 
an observed diffraction pattern of a single phase 
kaolinite, after background subtraction, is shown and 
used as the y(2θ)′k in the type-C function.

3)  α-quartz belongs to the trigonal system with a 
small unit cell. Preliminary data processing was not 
necessary for this component material.

4)  In QPA, the type-A, B and C functions were assigned 
to α-quartz, albite and kaolinite, respectively. Pre-
determined {I′jk} and y(2θ)′k in steps 1 and 2 were 
used in the forms of Sck I′jk and Sck y(2θ)′k for type-B 
(albite) and C (kaolinite) functions, respectively. 
In WPPF, individual Ijk and two Sck parameters 
were refined together with the unit cell and other 
parameters of α-quartz and albite.

Figure 5 shows the ternary mixture WPPF result. Table 
3 gives results of QPA with the three intensity datasets 
obtained by repeated scans with the sample repacked 
prior to each scan. In this case, the root-mean-square 
error (RMSE) for ∆wk is ≤ 0.6%.

7.2.　QPA using type-C2 function
a)  QPA of α-Al2O3＋γ-Al2O3 binary mixtures

Samples were α- and γ-Al2O3 binary mixtures with 
five different weight ratios. Figure 6 shows diffraction 
patterns of α- and γ-Al2O3, measured under the same 
experimental conditions. α-Al2O3 is chemically and 
thermally stable and is used as a standard reference 
material. It has high crystallinity and gives very 
sharp peaks as shown in Fig. 6. On the other hand, 
γ-Al2O3 has the structure of a defect cubic spinel type 
which gives broadened profiles and diffuse scattering 
throughout the whole angular region. The diffraction 
pattern for α-Al2O3 can easily be modeled based 
on the crystal structure. On the other hand, neither 
pattern decomposition nor accurate determination of 
the background height nor structure-based modeling 
of diffraction pattern can realistically be applied to the 

Fig. 3. WPPF result for the diffraction pattern of albite. Data 
are plotted as in Fig. 2.

Fig. 4. Observed diffraction pattern of single-phase kaolinite 
after subtracting background intensities.

Fig. 5. WPPF result for the diffraction pattern of α-SiO2 ＋ 
albite ＋ kaolinite mixture (13). Data are plotted as in 
Fig. 2.

Table 3. Results of QPA by the DDM for ternary mixture in 
three repeated scans(13).

component Number 
of Scan

α-quartz albite Kaolinite
RMSE

wk
weigh (%) 50.00 39.97 10.03

∆wk (%)

1st －0.54 －0.02 0.57 0.46

2nd 　0.78 －0.78 0.00 0.63

3rd 　0.34 －0.81 0.47 0.57
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latter. In Fig. 6, profile intensities are higher for γ-Al2O3 
than α-Al2O3 in all background regions of α-Al2O3; this 
is due to the diffuse scattering from γ-Al2O3. Original 
background heights of α- and γ-Al2O3 under the same 
experimental condition are, however, considered to be 
the same. Then it was assumed that the condition in 
equation (12) holds for these binary mixtures.

Observed diffraction patterns of α- and γ-Al2O3 in 
Fig. 6 were used without subtracting their background 
intensities as y(2θ)k

S in the type-C2 function. Refined 
parameters were scale parameters, parameters for 
correcting a small shift of the pattern along the 2θ-axis 
(＜0.01° in general), and parameters in the background 
function. Figures 7 and 8 show WPPF results for two 
mixtures with weight ratios of 95 : 5 and 5 : 95. Table 
4 gives QPA results. Average value of |∆wk| for five 
mixtures (|∆wk|av) is just 0.05%. In Fig. 7, it was hard to 
see a trace of γ-Al2O3 pattern; nevertheless γ-Al2O3 was 
accurately quantified.
b)  QPA of amorphous component

Samples were binary mixtures of α-quartz (SiO2) and 
glass-SiO2 in four different weight ratios. As in the same 
manner as the previous example, the diffraction pattern 
of single-phase α-quartz and the halo pattern of glass-
SiO2 were separately measured, and both patterns were 
used with the type-C2 function without subtracting their 
background intensities. Figure 9 shows a WPPF result 
and Table 5 gives QPA results.

In QPA of mixtures containing an amorphous 
component, the type-C function can be assigned to 
the amorphous halo after subtracting the background 
intensities. However, whole profile of the amorphous 

Fig. 6. Observed diffraction patterns of single phase α- 
and γ-Al2O3 powders measured under the same 
experimental condition superimposed on the same 
intensity scale. Inset image represents part of the 
diagram with an enlarged scale.

Fig. 7. WPPF result for the diffraction pattern of α- and 
γ-Al2O3 mixture with a weight ratio of 95 : 5(15). Data 
are plotted as in Fig. 2.

Fig. 8. WPPF result for the diffraction pattern of α- and 
γ-Al2O3 mixture with a weight ratio of 5 : 95(15). Data 
are plotted as in Fig. 2.

Table 4. wk
weigh and ∆wk (in %) for α- and γ-Al2O3 mixtures 

with five different weight ratios. Data are given 
only for γ-Al2O3 since those for α-Al2O3 can be 
obtained by 1－wk

weigh and －∆wk
(15).

wt. ratio 95 : 5 75 : 25 50 : 50 25 : 75 5 : 95
| ∆wk|av

wk
weigh(%) 5.01 25.05 50.04 75.00 95.01

∆wk (%) －0.04 －0.10 －0.00 －0.05 －0.06 0.05

Fig. 9. WPPF result for the diffraction pattern of α-quartz 
(SiO2) and SiO2 glass mixture in a weight ratio of 
2 : 8(15). Data are plotted as in Fig. 2.

Table 5. wk
weigh and ∆wk (in %) for α-quartz (SiO2) and SiO2 

glass mixtures with four different weight ratios. 
Data are given only for glass components. |∆wk|av 
represents the average of four |∆wk|(15).

wt. ratio 80 : 20 60 : 40 40 : 60 20 : 80
| ∆wk|av

wk
weigh(%) 19.68 40.35 60.01 80.17

∆wk (%) 0.4 －0.2 －0.4 －0.7 0.4
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halo interferes with the background function inducing a 
large error in QPA (14). The type-C2 function can avoid 
this interaction with the background function, so that it 
derives accurate QPA results as shown in Table 5 (15).

8.　Summary
Basic principles and operation methods of the 

DDM have been described. The DDM is based on a 
simple principle, the basic idea of which is expressed 
by equation (1). Observed quantities, required for 
conducting the DDM, are the total sums of scattered 
intensities from individual component phases, while the 
scattered intensity per unit weight can be calculated only 
from the chemical composition data. WPPF technique is 
a powerful tool for separating the observed diffraction 
pattern into individual component patterns. Four fitting 
functions of different types can arbitrarily be chosen, 
combined and fitted simultaneously. The type-C2 
function is a recent addition to powder diffraction data 
analysis. A few parameters were least-squares fitted in 
the WPPF technique, with the least-squares refinement 
being very fast and stable. Any scientist should be able 
to routinely derive the same quality QPA results using 
the type-C2 function. The simplicity of the type-C2 
function within WPPF is considered to be best suited for 
QPA in the quality control of industrial products (15).

In modern crystal structure analysis, concern is 
focused on fine structures revealing deviations from 
the average structure. Examples are nano crystals, 
disordered crystals, amorphous materials etc. In QPA, 
demands for the quantification of more complex 

mixtures, in which component materials in various 
crystalline states coexist, are expected increase in the 
future. Developing the DDM was a response to these 
demands. Development of additional techniques for 
pattern separation is also expected to continue.
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