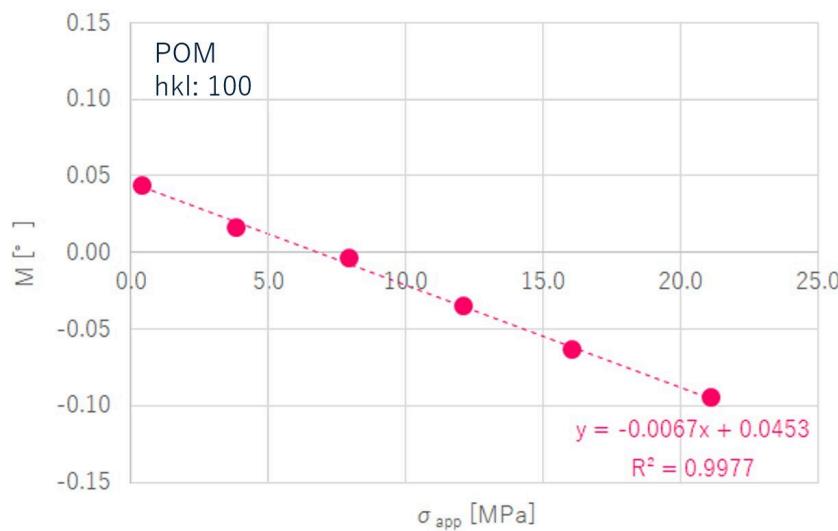

POLYMER011: Residual Stress Evaluation of Polymer Materials by X-ray Stress Measurement Method

Introduction


Residual stress is known to significantly affect the fatigue strength and the dimensional stability of products, and its evaluation and management are extremely important, especially for structural components. In recent years, polymeric materials have also been used for structural components, further increasing the need for residual stress evaluation. The X-ray stress measurement method known as the $\sin^2\psi$ method, which is widely used for metallic materials, can also be applied to polymeric materials. By combining X-ray stress measurement and tensile testing, it is possible to calculate the stress constant and evaluate the residual stress of polymeric materials with different degrees of crystallinity and preferred orientation with sufficient accuracy.

Residual stress

Analysis:	Parts and end products
Use:	Process control, failure analysis, quality assurance
Analyzed materials:	Polyacetal (POM)
Attachment:	Tensile attachment head

Figure 1: $2\theta - \sin^2\psi$ plots for different applied stresses

Figure 2: Correlation between applied stress (σ_{app}) and slope (M) of $2\theta - \sin^2\psi$ plot

Conclusion

The $2\theta - \sin^2\psi$ plot for each applied stress showed high linearity (Figure 1), and the correlation between the applied stress and the slope of the $2\theta - \sin^2\psi$ plot also showed high linearity (Figure 2). These results indicate that the X-ray stress measurement can be performed on polyacetal with sufficient accuracy. In addition, by calculating the stress constant as the reciprocal of the slope of the regression line shown in Figure 2, a more reliable evaluation of the residual stress can be achieved for polymeric materials.

Related products

SmartLab

Advanced state-of-the-art high-resolution XRD system powered by Guidance expert system software