View on rigaku.com

B-XRD1113 - Evaluation of oxidation state by the BVS method

Introduction

The valence of metal ions in a crystal is an important structural parameter for understanding a material's property and for designing new materials. There are numerous methods of experimentally determining the valence of a metal ion, including XAFS (X-ray Absorption Fine Structure), XPS (X-ray Photoelectron Spectroscopy), Mössbauer absorption spectroscopy, MEM (Maximum Entropy Method) and BVS (Bond Valence Sum). BVS is an empirical method based on Rietveld analysis that estimates the valence states based on the bond distances to neighboring atoms. Here, we illustrate the oxidation states of Mn oxides by BVS.

Measurements and results

X-ray powder diffraction of Mn_3O_4 and Mn_2O_3 were performed using Cu radiation. X-ray fluorescence of Mn is removed by the XRF reduction mode of the detector. The d-spacing is measured to be 0.82 Å ($20/0 = 140^\circ$), which corresponds to half to a third of the length of the Mn-O bond distance. BVS, which is computed from the Mn-O bond distances obtained from the Rietveld analysis, and the Bond Valence Parameters ($Mn^{2+}-O^{2-}$: 1.790 (3) and $Mn^{3+}-O^{2-}$: 1.760 (5)) (1), predicts the proper oxidation state of the Mn ion for a given crystal structure as shown in Fig.1. Table 1 and 2 show the BVS values for Mn ions in the Mn_3O_4 and Mn_2O_3 crystal structures, respectively. The reliability factors of the Rietveld analysis are $R_{wp} = 4.49\%$, $R_p = 2.62\%$, S = 1.6093 for Mn_3O_4 , and $R_{wp} = 4.55\%$, $R_p = 3.59\%$, S = 1.1949 for Mn_2O_3 , respectively. BVS is useful for evaluating the stability and the validity of artificially designed crystal structures, in addition to being a simple approach for predicting and estimating the oxidation states of metal ions from the crystal structure.

Space group: a, Å: α, °:		141 : l41/amd:1								
		5.76227	b, Å: β, °:		5.76227 90.000		c, Å:	9.47347		
		90.000					y, °:	90.000		
Ato	om/Molecule Element	Density Peak	Distance	Angle	e z	Occ.		В	Valence	Bond Valen.
Ato ►	om/Molecule Element Mn1(Mn)	Density Peak x 0.000000	Distance y 0.000000	Angle	z 00000	Occ.		B 0.13(3)	Valence 3	Bond Valen. 1.92276015.
▶	Element Mn1(Mn) Mn2(Mn)	Density Peak x 0.000000 0.000000	Distance y 0.000000 0.250000	Angle 0.0 0.6	z 000000 25000	Occ. 1.000 1.000		B 0.13(3) 0.17(2)	Valence 3 3	Bond Valen 1.92276015 2.97990813

Figure 1: The input screen for the BVS calculation of Mn_3O_4 . (When the Mn valences are input as trivalent, the BVS of Mn1 and Mn2 sites are calculated as 1.92 (divalent) and 2.98 (trivalent), respectively.)

Table 1: BVS of Mn ions and structural parameters of Mn₃O₄

Space group				141: I4 ₁ /amd:1						
a (Å)	5.76227(10)			b (Å)	5.76227(10)		c (Å)	9.47347(18)		
α (°) 90.000			β (°)	90.000	90.000		90.000			
						1				
Element		х	У		z	Occupancy		В	BVS	
Mn1		0.0000	0.0000		0.0000	1.0		0.13(3)	2.085	
Mn2		0.0000	0.2500		0.6250	1.0		0.17(2)	2.980	
01		0.0000	0.2228(4)		0.3825(2)	1.0		0.19(4)	-	

Table 2: BVS of Mn ions and structural parameters of Mn_2O_3

Space group		206: la3						
a (Å)	9.41533(13)	b (Å)	9.41533(13)	c (Å)	9.41533(13)			
α (°)	90.000	β (°)	90.000	γ (°)	90.000			

Element	x	у	z	Occupancy	В	BVS
Mn1	0.0000	0.0000	0.0000	1.0	0.46(3)	3.047
Mn2	0.28519(6)	0.0000	0.0000	1.0	0.50(3)	3.026
01	0.1296(3)	0.1473(3)	-0.0841(2)	1.0	0.50(3)	-

References

(1) I. D. Brown and D Altermatt: Acta Cryst., **B41** (1985) 244-247.

Related products

SmartLab

Advanced state-of-the-art high-resolution XRD system powe red by Guidance expert system software

SmartLab SE

Highly versatile multipurpose X-ray diffractometer with built -in intelligent guidance

SmartLab Studio II

Windows-based software suite for Rigaku's X-ray diffractom eters