View on rigaku.com

# EDXRF1614 - High Calcium Limestone



## Scope

The measurement of CaCO<sub>3</sub>, MgCO<sub>3</sub>, Fe<sub>2</sub>O3, Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub> and K<sub>2</sub>O in high calcium limestone is demonstrated using empirical calibration.

### Background

Limestone (calcium carbonate) has many uses as the main ingredient in cement and mortar and is used as an aggregate in concrete and asphalt for building roads. Limestone is also used as a soil conditioner and is the raw material for making quick lime (calcium oxide), slaked lime (calcium hydroxide). During mining and processing operations it is important to monitor and control the limestone composition to ensure proper quality and characteristics desired for the various products. Rigaku meets this industry need with a high-performance, low-cost benchtop EDXRF system. Rugged and reliable, the <u>NEX QC+</u> is an ideal tool for measuring major carbonate and oxide components in limestone, with simple and intuitive software designed for the non-technical, at-line operator and for use in quality control labs.

## Calibration

A set of 14 assayed site-specific standards were provided by an industry user for this demonstration.

| Compound                       | Concentration range |
|--------------------------------|---------------------|
| CaCO <sub>3</sub>              | 85 - 99%            |
| MgCO <sub>3</sub>              | 0.6 - 10.1%         |
| Fe <sub>2</sub> O <sub>3</sub> | 0.03 – 1.3%         |

| Al <sub>2</sub> O <sub>3</sub> | 0.1 – 2.1%   |
|--------------------------------|--------------|
| SiO <sub>2</sub>               | 0.6 - 3.5%   |
| K <sub>2</sub> O               | 0.04 - 0.18% |

## Precision

Typical precision is shown here. Ten repeat analyses of each sample were performed with the sample in static position.

| Element: H12<br>Units: %       |                |               |          |            |
|--------------------------------|----------------|---------------|----------|------------|
| Compound                       | Standard value | Average value | Std. dev | % Relative |
| CaCO <sub>3</sub>              | 85.556         | 85.356        | 0.114    | 0.2        |
| MgCO <sub>3</sub>              | 10.065         | 9.832         | 0.127    | 1.3        |
| Fe <sub>2</sub> O <sub>3</sub> | 0.291          | 0.283         | 0.007    | 2.4        |
| Al <sub>2</sub> O <sub>3</sub> | 0.386          | 0.375         | 0.011    | 2.8        |
| SiO <sub>2</sub>               | 3.324          | 3.327         | 0.043    | 1.3        |
| K <sub>2</sub> 0               | 0.13           | 0.100         | 0.018    | 14         |

| Element: H14<br>Units: %       |                |               |          |            |
|--------------------------------|----------------|---------------|----------|------------|
| Compound                       | Standard value | Average value | Std. dev | % Relative |
| CaCO₃                          | 92.854         | 93.642        | 0.081    | 0.1        |
| MgCO <sub>3</sub>              | 5.923          | 5.952         | 0.103    | 1.7        |
| Fe <sub>2</sub> O <sub>3</sub> | 0.081          | 0.082         | 0.003    | 3.7        |
| Al <sub>2</sub> O <sub>3</sub> | 0.208          | 0.193         | 0.013    | 6.3        |
| SiO <sub>2</sub>               | 0.748          | 0.704         | 0.013    | 1.7        |
| K₂O                            | 0.07           | 0.078         | 0.014    | 20         |

| Element: H15<br>Units: %       |                |               |          |            |
|--------------------------------|----------------|---------------|----------|------------|
| Compound                       | Standard Value | Average Value | Std. Dev | % Relative |
| CaCO <sub>3</sub>              | 93.734         | 93.679        | 0.122    | 0.2        |
| MgCO <sub>3</sub>              | 3.978          | 4.155         | 0.080    | 2.0        |
| Fe <sub>2</sub> O <sub>3</sub> | 0.207          | 0.192         | 0.004    | 1.9        |
| Al <sub>2</sub> O <sub>3</sub> | 0.531          | 0.539         | 0.015    | 2.8        |

| SiO2             | 1.226 | 1.267 | 0.020 | 1.6 |
|------------------|-------|-------|-------|-----|
| K <sub>2</sub> 0 | 0.16  | 0.179 | 0.015 | 9.4 |

| Element: H6<br>Units: %        |                |               |          |            |
|--------------------------------|----------------|---------------|----------|------------|
| Compound                       | Standard value | Average value | Std. dev | % Relative |
| CaCO <sub>3</sub>              | 91.389         | 91.167        | 0.147    | 0.2        |
| MgCO <sub>3</sub>              | 1.163          | 1.045         | 0.075    | 6.4        |
| Fe <sub>2</sub> O <sub>3</sub> | 1.337          | 1.376         | 0.039    | 2.9        |
| Al <sub>2</sub> O <sub>3</sub> | 1.094          | 1.101         | 0.023    | 2.1        |
| SiO <sub>2</sub>               | 3.541          | 3.663         | 0.118    | 3.3        |
| K <sub>2</sub> 0               | 0.1            | 0.130         | 0.021    | 21         |

## Conclusion

The performance shown here demonstrates that NEX QC+ provides excellent sensitivity and performance for the measurement of carbonates and major oxides in limestone. Self-contained with a simple touchscreen operation, NEX QC+ is an excellent tool for at-line control and quality checks throughout the mining and processes.

## **Related products**



#### **NEX QC Series**

Combines quality, affordability, and performance for a wide range of applications