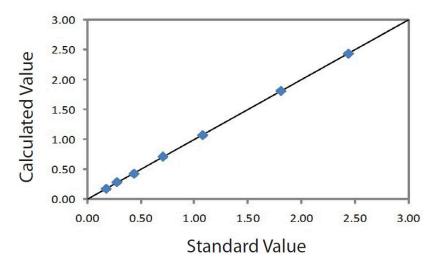
View on rigaku.com

EDXRF1175 - CCA Wood Treatment

Scope

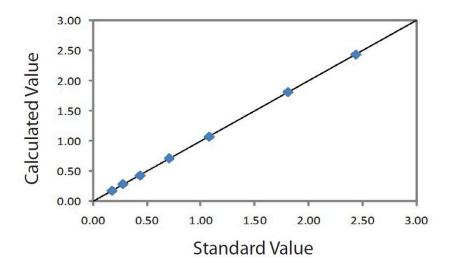
This application note demonstrates the measurement of chromated copper arsenate (CCA) treated wood and wood treatment solutions using <u>NEX QC</u>.

Background

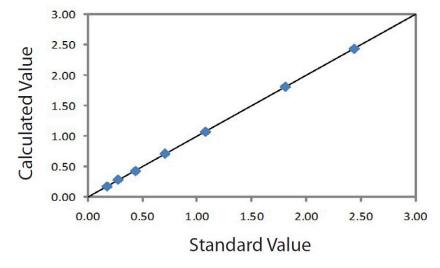

Wood treatments are used to protect lumber from fungi, insects, UV damage and general wear. In recent years, the US EPA has asked for voluntary compliance to restrict the use of CCA due to concerns about chromium and arsenic leaching into soils. Lumber treated with CCA is used in a limited number of situations, such as in roofing shingles, permanent building foundations, and certain commercial applications. When treating wood, the proper balance of treatment solution must be monitored to ensure the highest quality while minimizing waste and excess cost due to treatment usage or product rejection. Chromium, copper and arsenic levels are monitored in solution prior to treatment, and then in the wood to ensure proper retention. A quick, simple, reliable means of analysis is required throughout the quality control process. XRF is an ideal tool for such analysis.

Calibration - CCA in wood

An empirical calibration was built using a set of assayed wood standards.


Element: CrO ₃ Units: %			
Sample I.D.	Standard value	Calculated value	
W-C	0.46	0.464	

W-D	0.62	0.612
W-E	0.86	0.844
W-G	1.52	1.560
W-H	2.05	2.058
W-I	3.00	2.951
W-J	4.15	4.164


Calibration plot CrO₃ in wood

Element: CuO Units: %				
Sample I.D.	Standard value	Calculated value		
W-C	0.18	0.185		
W-D	0.24	0.237		
W-E	0.32	0.309		
W-G	0.56	0.591		
W-H	0.74	0.726		
W-I	1.10	1.083		
W-J	1.59	1.599		

Calibration plot CuO in wood

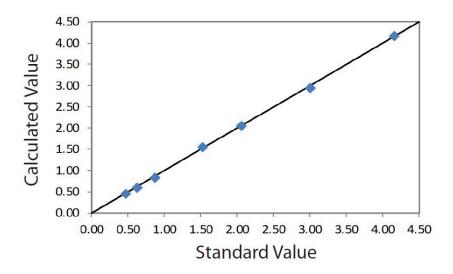
Element: As ₂ O ₅ Units: %			
Sample I.D.	Standard Value	Calculated Value	
W-C	0.33	0.328	
W-D	0.43	0.427	
W-E	0.58	0.586	
W-G	1.04	1.052	
W-H	1.42	1.420	
W-I	2.13	2.045	
W-J	3.02	3.024	

Calibration plot As₂O₅ in wood

Repeatability - CCA in wood

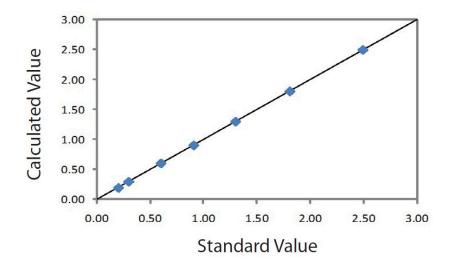
To demonstrate repeatability (precision), the low and high samples were chosen from the set of calibration standards. Each sample was measured in static position.

Element: Cr ₂ O ₃ Units: %				
Sample I.D.	Standard Value	Average Value	Std. Dev	% Relative
W-C	0.46	0.463	0.004	0.9
W-J	4.15	4.155	0.011	0.6

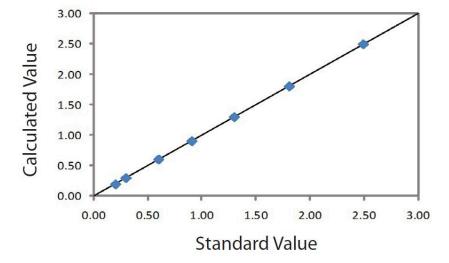

Element: CuO Units: %				
Sample I.D.	Standard Value	Average Value	Std. Dev	% Relative
W-C	0.18	0.187	0.001	0.5
W-J	1.59	1.653	0.012	0.8

Element: As₂O₅ Units: %					
Sample I.D.	Sample I.D. Standard Value Average Value Std. Dev % Relative				
W-C	0.33	0.331	0.001	0.3	
W-J	3.02	3.044	0.017	0.6	

Calibration - CCA in solution


An empirical calibration was built using a set of assayed solution standards.

Element: CrO ₃ Units: %			
Sample I.D.	Assay value	Calculated value	
S-A	2.859	2.862	
S-C	3.099	3.118	
S-D	3.215	3.197	
S-E	3.336	3.355	
S-G	3.573	3.524	
S-H	3.811	3.835	


Calibration plot CrO_3 in solution

Element: CuO Units: %			
Sample I.D.	Assay value	Calculated value	
S-A	1.050	1.056	
S-C	1.139	1.145	
S-D	1.182	1.182	
S-E	1.266	1.246	
S-G	1.313	1.310	
S-H	1.400	1.411	

Calibration plot CuO in solution

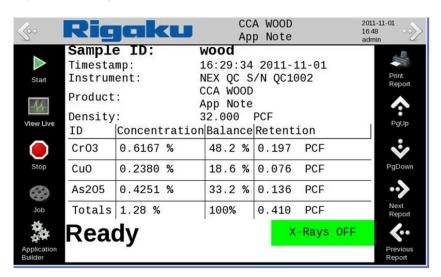
Element: As ₂ O ₅ Units: %			
Sample I.D.	Assay value	Calculated value	
S-A	2.082	2.0770	
S-C	2.257	2.2640	
S-D	2.342	2.3320	
S-E	2.430	2.4560	
S-G	2.603	2.6030	
S-H	2.755	2.7570	

Calibration plot As_2O_5 in solution

Repeatability - CCA in solution

To demonstrate repeatability (precision), the low and high samples were chosen from the set of calibration standards. Each sample was measured in static position.

Element: Cr ₂ O ₃ Units: %				
Sample I.D.	Standard value	Average value	Std. dev	% Relative
S-A	2.859	2.855	0.0173	0.6
S-H	3.811	3.818	0.0229	0.6


Element: CuO
Units: %

Sample I.D.	Standard value	Average value	Std. dev	% Relative
S-A	1.050	1.057	0.0033	0.3
S-H	1.400	1.409	0.0068	0.5

Element: As ₂ O ₅ Units: %				
Sample I.D.	Standard value	Average value	Std. dev	% Relative
S-A	2.082	2.078	0.0174	0.8
S-H	2.755	2.751	0.0161	0.6

Retention report

To measure a wood sample, enter the density of the wood. The measurement calculates concentrations of Cr_2O_3 , CuO and As_2O_5 and also outputs balance and retention values.

Conclusion

The typical results detailed here show exceptional performance for the fast and simple measurement of CCA in wood and solution. The Rigaku NEX QC is an excellent tool along the QC process in producing treated lumber, giving the production process an affordable means of optimizing quality while minimizing costs and helping to minimize product rejection and waste.

Related products

NEX QC Series

Combines quality, affordability, and performance for a wide range of applications