BENEATH THE SURFACE: X-RAY ANALYSES OF BATTERY MATERIALS AND STRUCTURES

A Battery Webinar Series by Rigaku

Non-destructive Elemental Analysis of Batteries Using XRF

Starting at 1 pm CDT

- You will be muted during the webinar.
- You can ask questions using the Q&A tool.
- You should hear music if your sound is working.

BENEATH THE SURFACE: X-RAY ANALYSES OF BATTERY MATERIALS AND STRUCTURES

A Battery Webinar Series by Rigaku

Non-destructive Elemental Analysis of Batteries Using XRF

Starting at 1 pm CDT

We are starting now...

Presenter: Amber Quevy | XRF Applications Lab Manager

Co-presenter: **Tim Bradow** | Sr. Business Development Manager

Host: Aya Takase | Head of Global Marketing

You can ask questions during the presentation. Please use the Q&A to ask questions.

Recording will be available tomorrow.

Non-Destructive Elemental Analysis of Batteries Using XRF

You will learn

- 1. What is XRF?
- 2. Why use XRF?
- 3. Where is XRF used?
- 4. How is XRF used? Examples!

What is XRF?

The Subject

The Building Blocks

Periodic Table of Chemical Elements

Bob's Close-up

X-ray Fluorescence Types: EDXRF vs. WDXRF

Instrument	EDXRF	WDXRF
Format	Handheld or Benchtop	Benchtop and Floor models
Tube	Ag, Pd, Rh	Pd, Rh
Wattage	4W-100W	200W-4000W
Analysis range	Na-U	Be-Cm
Atmosphere Options	Air, Helium, Vacuum	Helium, Vacuum
Cost	\$-\$\$	\$\$-\$\$\$

Types of XRF: Energy Dispersive (EDXRF)

Examples of EDXRF Instruments

NEX QC Series

NEX DE Series

NEX CGII Series

Types of XRF: Wavelength Dispersive (WDXRF)

Examples of WDXRF Instruments

Supermini200

ZSX Primus Series

Why use XRF?

Traditional Analysis Techniques

- 1. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
- 2. X-ray Photoelectron Spectroscopy (XPS)
- 3. X-ray Fluorescence (XRF)
- 4. Others!

Sample Preparation

- 1. Solids
- 2. Powders
- 3. Liquids

Sample Preparation: Overview

Sample Preparation: Pressed Pellet

Wide Range of Analytes

Ease of Use

Technique	ICP-MS	XRF
Prep time	Hours +	5-15 minutes
Prep materials needed	Acids, glassware, centrifuge, digesting block, hot plate, etc.	Press, die assembly
Analysis time	Minutes	<1-30 minutes
Sample recovery	Typically no	Yes
Calibration setup	Individual element	All elements
Calibration time	Hours +	Hour
Calibration upkeep	Daily +	Every 6 months
Operator	Chemist	Anyone

Types of Analyses

- 1. Qualitative (Scanning for all analytes!)
- 2. Semi-quantitative
- 3. Quantitative

Types of Analyses: Qualitative

Types of Analyses: Semi-quantitative

Comp.	Result (mass%)
Na2O	0.66
MgO	1.33
Al203	19.93
SiO2	42.09
P2O5	0.83
SO3	2.01
Cl	0.17
K2O	4.18
CaO	8.58
TiO2	2.91
MnO	0.25
Fe2O3	16.24
NiO	0.05
CuO	0.05
ZnO	0.09
Rb2O	0.07
SrO	0.18
ZrO2	0.13
PbO	0.20
SnO2	0.07

Types of Analyses: Quantitative

Types of Analyses: Quantitative

Where is XRF used?

How is XRF used?

NCM Cathode Example

NCM Cathode Example: Prep

Sample Mix binder
10-20 mass%

NCM Cathode Example: Prep

10-20 mass%

Press

5-7g sample 32mm Al ring 10 Tons

NCM Cathode Example: Semi-Quantitative Results

		Ni	Co	Mn
Sample A	WDXRF	0.846	0.098	0.056
	ICP	0.85	0.10	0.05
Sample B	WDXRF	0.490	0.201	0.309
	ICP	0.50	0.20	0.30

Unit: mol

NCM Cathode Example: Impurity Analysis

Graphite Anode Example

Graphite Anode Example: Prep

Graphite Anode Example: Semi-quantitative Results

Graphite Anode Example: Semi-quantitative Results

	Na	Mg	Al	S	Ca	Fe	Zr
Sample A	83	249	28	38	73	39	13
Sample B	N.D.	975	24	2958	41	6	N.D.
Sample C	81	242	42	76	81	180	4

Unit: ppm

Black Mass Recycled Material Example

Black Mass Recycled Screening Example: Setup

NEX QC+ QuantEZ EDXRF

Black Mass Recycled Screening Example: Semiquantitative Results

Element	Result (mass%)	Stat. error
Со	13.556	0.008
Mn	9.963	0.008
Ni	16.163	0.008
Al	6.156	0.009
Cu	6.605	0.009
Fe	2.104	0.003
Si	0.7577	0.0020
Р	2.099	0.002
S	0.1275	0.0004
Cl	0.0317	0.0002
К	0.2074	0.0067
Ca	0.4066	0.0050

- 1. What is XRF?
 - Elemental analysis covering a wide range
 - Variety of instruments
 - Variety of analysis "flavors"

2. Why use XRF?

- Non-destructive
- Ease of prep and use
- Variety of preparations to meet any needs
- Speed of analysis

3. Where is XRF used?

- Mining
- Refining
- Recycling

- 4. How is XRF used?
 - Black mass recycling screening
 - Graphite anode
 - NCM cathode powder
 - Many more!!!

Questions and Answers

We'll follow up with your questions.

Recording will be available tomorrow.

Check out our new Ebook!

Thank you!

